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The classical Riesz-Thorin interpolation theorem [6] was extended by Hirsch- 

man [2] and Stein [5] to analytic families of operators. We recall the notions: 

Let F(z) ,  z = x + i y ,  be analytic in 0 <  Re z <  1 and continuous in 

0 =< Re z _< 1. F(z) is said to be of admissible growth iff 

Sup log iF(x + iY) I < Ae~Iyl where a < 7z. 
O<_x~l  

The significance of this notion is in the following lemma due to Hirschman [2]: 

LEMMA. l f  F(z) is of admissible growth and ifloglF(it) l ~ ao(t), log IF ( i+  it) I 
<= a~(t) then log I F(0) ]_<f_% Po(0, t)ao(t)dt + f 2~ P~(O, t)a~(t)dt where P~(O, t) are 
the values of the Poisson kernel Jor the strip, on Rez  = 0, Rez  = 1. 

We next define analytic families of  linear operators: Let (M,/~) (N, v) be two 

measure spaces. Let {~} be a family of linear operators indexed by z ,  0 ~ Re z ~ 1 

so that for each z, Tz is a mapping of simple functions on M to measurable func- 

tions on N.  {T~} is called an analytic family iff for any measurable set E of M 

of  finite measure, for almost every y 6 N,  the function qSr(z) = T~(X~)(y) is 

analytic in 0 < Re z < 1, continuous in 0 ~ Re z __< 1. The analytic family is 

of  admissible growth iff for almost every y ~ N,  ~by(z) is of admissible growth. 

We finally recall the notion of L(p, q) spaces. An exposition of  these spaces 

can be found in Hunt [3]. 

Let f be a complex valued measurable function defined on a ~-finite measure 

space (M,/~). # is assumed to be non-negative. We assume that f is finite valued 

a.e., and denoting 

Ey = {x/If(x)] > Y}, 2r(y) = /~(Ey), 

we assume also that for some y > 0, 2 ; ( y ) <  oo. We define 

f*(t) = Inf{y > Oily(y) < t}. 
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This is called the non decreasing rearrangement of f .  We define 

{( fo <7) "" t qlp f *  t q 
I l f l l ,  = r ( ) ] -  0 < p < ~ , 0 < q < ~  

Sup t l lpf*(t)  0 < p < ~ ,  q = c~ 
O < t  

and L(p ,q )  = {f/llfll*o < ~ } .  For p -- q these are the usual L p spaces, while 

for q = ~ we have the so-called weak L p spaces, i.e., the spaces of functions 

which satisfy 2:(y) < C/y p . 

Many of the proofs are simplified if we make use of  the following auxiliary 
function: 

For a n y 0 < r  < 1 r < q , r < p w e d e f i n e  

f 1 r l / r  
s~p{(-~7 Clf(,Old.(x))l.(.)>t}, 

f ** ( t )  = f**( t ,  r) = 
1 ~ < 

. If(x)[ dlz(x) , I~(M) = t 

t < /~(M) 

Since f *  is non-increasing we have (f*)**(t) = ( l i t  j't o [ f* (u )] 'du)  ' / ' ,  and since 

f**  is continuous from the right and non-increasing, we have (f**)* = f**.  We 

can show 

which yields 

f * ( t )  < f**( t )  < (f*)**(t) 

II s I1". ---- IIs** II *.q --< II (f*)** 11"<, 
while from Hardy's  inequality [-3, pp. 256)] one has 

= (__f__p ]1/, tl (f*)**ll.*. < Ilsll.*. \ p  - r /  

and so the topologies defined on L(p, q) by all these functions are equivalent. 

We denote [If** I[*q--[]flipq" We can now prove the following theorem: 

THEOREM. I f  {T,.} is an analy t ic  f a m i l y  of  l inear operators,  which is o f  

admiss ib le  growth,  then i f  f o r  all  s imple  func t ions  

(1) 

(2) 

II T,,S II.o~o ~ Ao(t)IIs ll*o.o 

II r ,+, , f  II.,,, ~ A,(t) IIf II.*,.,, 
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where logAi(t  ) < Ae °ltl a < n ,  then for  0 < 0 < 1, 

1 1 - 0  0 1 1 - 0  0 - + _ _  - +=__ 
P P0 Pl ~ ~o q~ 

1 1 - 0  0 1 1 - 0  0 - _ _ +  - + 
P Po Pl q qo ql 

we have for  all simple functions f 

(3) [I r g  < BAollfll;o 
where logA 0 =< S ~  Po(0, t ) logAo(t)dt  + S~-o~P1 (0, t ) logAl ( t )d t .  

The following lemma will be basic in the proof: 

IsraelJ. Math., 

function,  l[f ][*q = 1. Then we can f ind non-negative simple functions Go(x), 

Gl(x ) so that 

f ( x )  = e i ' °  S(X)[Go(x)]l -O[Gl(x)]O 

with II G,(x)[Iv*q, <= B.  

Proof, The case qo ¢ 0% ql ¢ oo is done in [3, p. 266]. The proof when one 

of the q~, say qo, is ¢ oe, is included implicitly there: One takes 

ho(t) = t -1/ '°  hi(t) = [(f*)**]q/q't t/q' (q/P-q'/P'), 

and the proof proceeds as in [3]. 

When both q~ = oo, write hi ( t )=  (f*(t))  pip' , Clearly 

[[h,(t) l[*oo = Sup t l / " [ f * ( t ) ] ' / " =  Sup [t~/' f*(t)] "/'' = (l[ f [l*oo) p/p' = 1. 
O < t  0 < t  

h~(t) are non-increasing step functions, continuous from the right and so are fit 

to serve as rearrangements of simple functions. The sets of constancy of  h~ are 

the sets of constancy o f f *  and so correspond to the sets of constancy o f f .  

G~(x) are now defined on the sets of constancy o f f ,  and have the same values 

there as h~(t) have on the corresponding sets. Clearly G* = h~ and so II G, II*,~o = 1. 

Finally, since f * ( t ) =  h~-°(t)h°(t) ,  we have f ( x ) =  ei"r°I<X~[Go(x)]l-°[Gl(x)] °. 

Let us now proceed with the proof of the theorem. Let f be a simple function, 

]l f ]l*q = 1. Define 

F(~, ~) = e ' ° "  +< ' ) [Go(X) ] ' -= [G, (x ) ] ' .  

1 1 - 0  0 1 1 - 0  0 
LEMMA. Let - - -  + - -  - - -  + - - ,  and let f be a simple 

P Po Pl q qo qt 
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Since Gi(x ) are simple and non-negative, TzF(. , z)(y) is for almost every y e N 

an analytic function of z in 0 < Re z < 1, continuous in 0 < Re z < 1, and of 

admissible growth. Writing TzF(y , z) for TzF(', z)(y) we therefore have 

(1) loglToF(y,O)l < ~ Po(O,t)loglT~,F(y, it)[dt 

L, + l(0, t)log I Tl+uF(y, 1 + it)ldt. 

Note: ToF(y, O) = (TOY) (y). 

Taking exponentials of both sides of (1) we get 

(2) [rof(Y)l<[{exP ( l ~  f~oPo(O,t)loglTi,F(y, it)['dt)}l/r] 1-° 

[{ 1 Pi(O,t)loglZl+,,F(y,l+it)lrdt)l 1. x exp ~ -o~ 

Since I1(1 - 1/n)Zof]l~ / II Tof[l*~ we can assume that we have strict inequality 

in (2), for every y .  

Denote by E k the set of all points y so that (2) holds when the integrations are 

performed over I t l < K1 for all k < K1. Clearly then (since we assume strict 

inequality in (2)) E r/x N and so II ToY II*q -- limk~oo 11 z J o f  tl*q. 
We can therefore assume 

(3) ITof[< [ {exP(1  _ - -  ~ jlkkPo(O,t)loglTitF(y, it)l~dt)}l"] 1-° 

1 k i,dt)}l/]o x [{exp(-o-f_kPx(O,t,)loglTl+,,F(y,l+it) 

Denote Ilk = fk_ k Pi(O, t)dt. Since Pi(O, t) > O, f~_~Po(O, t)dt = 1 - O, 
.p_~Pl(O,t)dt = 0 we have lok7 1 -  0 l lkS O, and we have 

[{ )},,]l_o 
(4) ] Tof] <= exp Po(O, t) log I T~,F(y, it) l'dt 

x [{exp(/1- ~ f]kPl(O,t)log[Tl+,,F(y,i+it)['dO}l/'] ° 

Using Jensen's inequality we get: 
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[(1 ; }1,,],. 
-~Ok gPo(O, t) [ TifF(y, it) i'dt 

[I 1 ; :  ?1 ~ x ~ l(O,t)l Tl+,,F(y, l+ i t ) ld t  

Denote 

I r o s l  --< 

Ho(y) [ /__~k ffkPo(O ' ]Xl, = t)[ TitF(y , it)[rdt , 

tIl(y ) = ~ kPl(O'OI TI+"F(y' l+it) l 'dt  ; 

and then I Tofl <= [IIo(y)]t-°[Hl(y)-I °. 
H61der's inequality implies Tof**(v) < ** i = [go (v)] -°[H**(v)]°, and then 

(5) I IzJIlY~ < BII ,-o _- H o II,o0o II H,  I1~,~, 
By Fubini's theorem 

.:,<o,~= (~ r?o<0, )" t){ T.F**(o, it)i'dt 

and so for qo < oo 

(6) IIH°II'°"°--< Po.o ~ k P°(O't) lT~'F (v ' i t ) l 'dt  "°/'v"°~'; - 

while for qo = 

f~f '"  (6') I1~/o II,o~ < Sup v ' ip°[1  o(O.t)iTi.F**(v, it)l'dt) 
= o < o  t lok 

the proof in the second case is similar to the proof when ~7o < oo. We shall leave 

it to the reader and continue from (6). 

Using the integral form of Minkowski's inequality, we get from (6): 

( ;  [Z~ ] ) "  1 ?1o T F**(v it~t~°v~°l~° dv '/~° dt II//o t1~o.o < ~Ok -k P°(O't) rio it , ,  ,I v 

(~ ; :  )'" = o(0, t)]1 Ti,F(', i t ) I [ ;o j t  

(~ £ )" <= B 1 Po(O, t)A~o(t)II Go II;o,odt 

(~f" )" <= B 1 _ f  o(O.t)A~(t)dt 
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Similarly 
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il H~ tlP,~ ~ B 1 [(t)dt 

{[1 ]G,-o 
(7) II Tof [l*~ <= B ~Ok f -k  P°(O' t)A~°(t)dt 

ilr 
and so from (5): 

355 

] I/rl° 

We let now r--+ 0 and get: 

[ ( L,o )],_o 11 zJIl~ <= B exp (O,t)logAo(t)dt 

x [exP( l ~  f f  Pl(O,t)logAl(t)dt)] ° 

Letting now k ~ oo we get: 

) (f? ) [I To.fil*~ <= Bexp o(O,t)logAo(t)dt exp t(O,t)logdi(t)dt , 

and the theorem is proved. 

Since L(p, q) are complete, and since for q < co, simple functions are dense 

in L(p, q), we can, if q < oe, extend T o to all of  L(p, q) and get 

II rof II,~ --< BAo II f II.o, 
In the case of a single operator, we can prove the norm inequality for all 

f e  L(p, q) from the result for simple functions also when q = 00. See Hunt [3]. 

We notice that if ~h = co, i = 0 ,1 ,  then F/ = co. Thus from weak type at 

the endpoints, we get weak type in the segment. For a single operator this is 

not the best result. From Marcinkiewicz's theorem [7] we get strong type in 

the open segment from weak type at the endpoints. For a family of operators, 

however, we cannot improve the result as the following comments indicate. 

Muckenhoupt  in [4] showed that fractional integral operators 

f~ n(t) Dff  = , ~-i~f(x - t)dt 0 <= ~, < 1 

where f~(t) = f ~ ( ] - ~ ) i s  in L I/~ on the unit sphere, can be represented as the 

values for z = 2 of an analytic family of operators {Tz}, of admissible growth, 

and satisfying: 
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11 ~, f  11 ~,~ --< II f I1T,1 

117-1 +.s I11", ~ =< B, II s IIZ.1. 
Applying our interpolation theorem we get 

II o~fll .~,~ --< B~IIfIIT,1. 
I.e. D~ maps L(1, 1) into L(1/~, ~ ) .  For a different proof of this result see Zyg- 

mund [-7]. 

Take now n = 1, fl(t) = 1, and consider 

1 
{~ - - < t < 0 n  

fn(t) = elsewhere. 

For positive values of x we have Dzfn(X) . . . .  

Thus 

1 1 
where ~ = ~(x), 0 < ~ < - .  

(x + {)~ n 

f ~  n~ 0 < t < l  
(8) (Dafn)*(t) > n 

l < t .  
( . ~ -  n 

By computing the L(p,  q) norms for the functions on the right hand side of (8) 

we see that they will be uniformly bounded (as they should for Ilfnlll,1-- 1) 
only if p -- 1/2, q = ~ .  
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