ON ANALYTIC FAMILIES OF OPERATORS

BY
YORAM SAGHER(?)

The classical Riesz-Thorin interpolation theorem [6] was extended by Hirsch-
man [2] and Stein [5] to analytic families of operators. We recall the notions:
Let F(z), z=x+iy, be analytic in 0<Rez<! and continuous in
0 < Rez £ 1. F(z) is said to be of admissible growth iff
Sup log|F(x + iy)| < Ae™! where a <.

0=xs1
The significance of this notion is in the following lemma due to Hirschman [2]:

LemMMa. If F(z) is of admissible growth and ifloglF(it)] < ay(h), 10glF(i+it)|
< a,(?) then log| F(0)| <] Z, Po(0, Dag(f)dt+ [ 2, Py(8, )a,(f)dt where P(6, 1) are
the values of the Poisson kernel for the strip, on Rez = 0, Rez = 1.

We next define analytic families of linear operators: Let (M, u) (N,v) be two
measure spaces. Let {7} be a family of linear operators indexed by z,0 < Rez £ 1
so that for each z, T, is a mapping of simple functions on M to measurable func-
tions on N. {T,} is called an analytic family iff for any measurable set E of M
of finite measure, for almost every ye N, the function ¢,(z) = T(Xg)(y) is
analytic in 0 < Rez < 1, continuous in 0 < Rez < 1. The analytic family is
of admissible growth iff for almost every ye N, ¢,(z) is of admissible growth.

We finally recall the notion of L(p,q) spaces. An exposition of these spaces
can be found in Hunt [3].

Let f be a complex valued measurable function defined on a o-finite measure
space (M, u). p is assumed to be non-negative. We assume that f is finite valued

a.e., and denoting
E, = {x/|f0)] >}, 40) = WE),
we assume also that for some y >0, 1(y) < oo. We define

¥ = Inf{y > 0/Ay) < t}.
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This is called the non decreasing rearrangement of f. We define

N dr\'/
(— f P F ()] —) 0<p<mw,0<g<w
[ £l = 3\ Yo !
pq
Sup t/2f *(¢) 0<p=ZLw,qg =
o<t

and L(p,q) = {f/| f||}, < ©}. For p = ¢ these are the usual If spaces, while
for g = o we have the so-called weak I” spaces, i.e., the spaces of functions
which satisfy 1,(y) £ C/y”.

Many of the proofs are simplified if we make use of the following auxiliary
function:

ForanyO0<r <1 r £ ¢, r < p we define

swp [ [ Voo laueo) e > o< o)

(r e

Since f* is non-increasing we have (f*)**(t) = (1/¢t [{[f*(u)]'du)"”", and since

f** is continuous from the right and non-increasing, we have (f**)* = f** We

0 = f**(,r) =

1/r
'du(X)) : WMy st

can show
@) =0 = (FH**0
which yields
1715 = 1 [ e = L™ |5,
while from Hardy’s inequality [3, pp. 256)] one has

[ s (32) 110

and so the topologies defined on L(p,q) by all these functions are equivalent.
We denote || f**|% = | f|,,. We can now prove the following theorem:

TueoreM. If {T,} is an analytic family of linear operators, which is of
admissible growth, then if for all simple functions

(1) ” ’I;‘f ”;060 = AO(t) “f “;:)110
@ ” Tivuf H;u'n = 4,0 ”f”p*:qn
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where log A(f) £ Ae”™ a <7, then for 0<0<1,

1 1—-60 6 1 1-6 6
- = — + — - = p + =
p Do D1 q do q
1 1-6 6 1 1-6 6
p Po Py q qo q1

we have for all simple functions f

3) | Tof |7 < BAo | f |3

where log A, £ [Z,, Po(6, ) log Ay(D)dt + [2, P (8,1)log 4,(t)dt.

The following lemma will be basic in the proof:

—1=1_-0+i l=1——6’~!-i,andletfbeasimple
p Do Py q 90 q

function, | f |z, = 1. Then we can find non-negative simple functions Gy(x),

G,(x) so that

LEMMA. Let

f(x) = &7 IO[Gy()] °[G ()]’

with || G0 |4, < B.
Proof. The case g, # ©, ¢, # oo is done in [3, p. 266]. The proof when one
of the g;, say q,, is # 0, is included implicitly there: One takes

ho(t) = 1~ 1/po hy(t) = [(f*)**]q/‘“t”’“ (q/p—qx/m)’

and the proof proceeds as in [3].
When both g; = oo, write h(t) = (f*()”"* , Clearly

"h,-(t) ”;w = ggg tl/Pl[f*(t)]P/Pi= %lipt [t”"f*(t)]p/m — (”f”:w)p/m = 1.

h{t) are non-increasing step functions, continuous from the right and so are fit
to serve as rearrangements of simple functions. The sets of constancy of h; are
the sets of constancy of f* and so correspond to the sets of constancy of f.

G(x) are now defined on the sets of constancy of f, and have the same values
there as h,(f) have on the corresponding sets. Clearly G;* = h;and so || G; ||}, = 1.
Finally, since f*() = hi~°(t)h(t), we have f(x) = & O[Gy(x)]' “°[G.(%)]°.

Let us now proceed with the proof of the theorem. Let f be a simple function,
I f]%; = 1. Define

F(x,z) = € “"O[Gy(x)] ~*[G,(0)F.
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Since G{x) are simple and non-negative, T,F(-,z)(y) is for almost every ye N
an analytic function of z in 0 < Rez < 1, continuous in 0 £ Rez < 1, and of
admissible growth. Writing T,F(y, z) for T,F(-,z)(y) we therefore have

M) E|TF0.0| S [ Pu6.log] T )] de

+ f P,(8,0)log| Ty+F(y,1 + it)| dt.

Note: T,F(y,0) = (T,/))(»).

Taking exponentials of both sides of (1) we get

i-6

93} | f| = [{exp (l—i—ﬁ f:PO(e’ Dlog| TuF(, i) [’dt)}lh]

~ oo 1/l’ [}
X [{exp(%} ’ P1(0,t)log|T1+,~,F(y,1+it)|'dt)} ]

Since | (1 — 1/m)T,f |5 ~ || Tof | % we can assume that we have strict inequality
in (2), for every y.

Denote by E, the set of all points y so that (2) holds when the integrations are
performed over |t| < K, for all k < K;. Clearly then (since we assume strict
inequality in (2)) Ex # N and so | Tof ||}, = limyo o || x5 Tof |5 -

We can therefore assume

@ Iwls [{ ex (7 | kkP o0, D log| TF(y, it)l'dt)} ”'] o

k 1/ 0
X [{exp(%f kPl(G,t,)loglT1+5,F(y,1+it)|'dt)} ]

Denote I, = [, P(6, dt. Since P(0, )20, [Z Py(0,0)dt =1 —8,
[24Py(0,0)dt = 0 we have Iy, # 1 -0 I, 7 6, and we have

1-0

@) ITGfI < Hexp(fjj Jlkk Py, t)logIT,-,F(y, it)l'dt)}‘/r]

']

1 k
< [{eo(i [ Pue.otog Tuvart 1410

Using Jensen’s inequality we get:
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7] = [{T(lnf f kkP o0, )| TuF(y, it) 'dt}”']l_e

1 k 1/r0
x [{l— | PA6.D| TP, L) | ]
1k —k
Denote
1 k . 1/r
) = [ [P0l T, inlar]
1 k 1/r
Hy(y) = [E f_kP1(9J)|T1+nF(y, 1+i‘)|'dt] ;

and then | T,f| < [Ho(n)]' ~°[H,(»)] .
Holder’s inequality implies Tof**(v) < [He*(®)] °[H*)], and then

) | T 113 = Bl Ho laz | H1 5.,

By Fubini’s theorem

k 1/r
50 3 (1 [ P@0| T, ar)
0k k

and so for gy < o
q It ¥ ** L 1/40
© | Ho e = ['?9 ( [*‘— f Py0,0)| T F (v, it)['dt]%/’vqo!vo @}
oo Llox J-x v
while for g, = o

k 1/r
©) [ Hollne = Spo™ (- [ Pi@.0| TF G, i)
O<wp Ok —k

the proof in the second case is similar to the proof when g, < co. We shall leave
it to the reader and continue from (6).

Using the integral form of Minkowski’s inequality, we get from (6):
1 - q ? R /30 1/r
1Ho Lo < (_ J Pol6,) [g‘g f | T, F**(v, it)[Tov™/Po @] dt)
lOk -k Do Jo v

- (lo% f kkpo(e, 0| TFC-, in)| If,o%dt)m

IIA

1 k . . 1/r
B (I—Ok— f Pol0.043(0)] Go ”,.,O%dt)

B (i f “ Py, t)A(',(t)dt) 1/'

l()k —~k

IIA
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Similarly
1 k 1/r
|Hilpg < B [T* f P1(9,I)A1'(t)dt] and so from (5):
1k ~k
1 [k 1/ry1-86
Q) | T/ 7 = B{ [IT,, f kPo(e,t)A:)(t)dt] }

X { [li—k f kal(O, HA l(t)dt] I/r}o

We let now r — 0 and get:

1T/l = B [eXp(l(l)—k J.kkp ol0, t)long(t)dt)]I—G

X [exp(li— fkk P.(6,1) logAl(t)dt)]‘9

1k -

Letting now k— oo we get:

| Tof |5 < Bexp (fz’oo((?, t)logAO(t)dt) exp (f_wfl(e, t)log 4,(t) dt),

and the theorem is proved.
Since L(p,q) are complete, and since for g < oo, simple functions are dense
in L(p, q), we can, if ¢ < co, extend T to all of L(p,q) and get

” Tof ”ir? = B4, ”f”pq'

In the case of a single operator, we can prove the norm inequality for all
fe L(p, ) from the result for simple functions also when ¢ = 00. See Hunt [3].

We notice that if §; = o0, i =0,1, then § = co. Thus from weak type at
the endpoints, we get weak type in the segment. For a single operator this is
not the best result. From Marcinkiewicz’s theorem [7] we get strong type in
the open segment from weak type at the endpoints. For a family of operators,
however, we cannot improve the result as the following comments indicate.

Muckenhoupt in [4] showed that fractional integral operators

Q1)

le=f /=04 0= a<t
E"

where Q(t) = Q(!——E—') is in I'* on the unit sphere, can be represented as the
values for z = A of an analytic family of operators {T,}, of admissible growth,

and satisfying:



356 YORAM SAGHER Israel J. Math.,
| Tf |5 = 1711
| Tovaf [f0 < B[ £ [T
Applying our interpolation theorem we get
| Das [t < B[ £]E.s

Le. D, maps L(1,1) into L(1/A, o). For a different proof of this result see Zyg-
mund [7].
Take now n = 1, Q(f) = 1, and consider

{n - ’1—1 <t<0
10 = 0 elsewhere.
For positive values of x we have D, f,(x) = o 6) ; Where & = ¢(x), 0 < ¢ < -
Thus
Cn* 0<t< %
® Dif)*(® 2

C
t

N =
IA
-

By computing the L(p,q) norms for the functions on the right hand side of (8)
we see that they will be uniformly bounded (as they should for ” Ju ” 110 =1
only if p=1/4, g = .
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